Součet vnitřních úhlů v obecném mnohoúhelníku s n stranami (tedy n-úhelníku) je 180^\circ\cdot(n-2). Například v pětiúhelníku je součet vnitřních úhlů 180^\circ(5-2)=540^\circ. Každý vnitřní úhel pak může mít jinou velikost.
Pravidelné mnohoúhelníky
- Každý vnitřní úhel v pravidelném mnohoúhelníku s n vrcholy má velikost 180^\circ\cdot\frac{n-2}{n}. Například v pravidelném osmiúhelníku má každý vnitřní úhel velikost 180^\circ\cdot\frac{8-2}{6}=135^\circ.
- Velikost středového úhlu pravidelného n-úhelníku je \frac{360^\circ}{n}. Například v pravidelném osmiúhelníku má každý středový úhel velikost \frac{360^\circ}{8}=45^\circ.
Při výpočtu neznámého úhlu v mnohoúhelníku lze využít i vrcholových a vedlejších úhlů.
Příklad: Určete velikost oranžového úhlu v pravidelném šestiúhelníku ABCDEF.
V pravidelném šestiúhelníku má každý úhel stejnou velikost, a to 180^\circ\cdot\frac{6-2}{6}=120^\circ. Úhel ABC má tedy velikost 120^\circ. Trojúhelník ABC je rovnoramenný, úhly u vrcholů A a C jsou pak shodné. Jejich velikost je (180^\circ-120^\circ):2=30^\circ.
Rozhodovačka
Rychlé procvičování výběrem ze dvou možností.
Úhly a mnohoúhelníky (střední)
zadání: 59
Typicky zabere: 8 min