Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Zlomky, mocniny, odmocniny
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
EOS
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

EOS
umime.to/EOS

Nastavení cvičení

Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/EOS

Zlomky, mocniny, odmocniny

Umocňování a odmocňování zlomku

Při umocňování (odmocňování) zlomku prostě umocníme (odmocníme) čitatele i jmenovatele:

  • \large(\frac{2}{3}\large)^2 = \frac{2^2}{3^2} = \frac{4}{9}

  • \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}}

  • \large(\frac{4}{5}\large)^{-1} = \frac{4^{-1}}{5^{-1}} = \frac{5}{4} (umocňování na -1 odpovídá prohození čitatele a jmenovatele)

Umocňování na zlomek

Umocňování na zlomek odpovídá tomu, že vezmeme mocninu podle čitatele a odmocninu podle jmenovatele, tj. x^\frac{a}{b} = \sqrt[b]{x^a}. Příklady:

  • 2^\frac{2}{3} = \sqrt[3]{2^2} = \sqrt[3]{4} = 1{,}587\ldots

  • 4^\frac{1}{2} = \sqrt{4^1} = 2

  • 81^\frac{3}{4} = \sqrt[4]{81^3} = \sqrt[4]{81}^3 = 3^3 = 27

Zavřít

Zlomky, mocniny, odmocniny (těžké)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence