Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Geometrie
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
GN7
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

GN7
umime.to/GN7

Nastavení cvičení

Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/GN7

Roviny: pojmy

Přímka je jednoznačně určena bodem a dvěma vektory, které nejsou kolineární. Na obrázku je rovina \alpha určená bodem A a vektory \vec{u}, \vec{v}. Každý vektor, který je kolmý k rovině \alpha se nazývá normálový vektor roviny \alpha. Na obrázku je normálový vektor \vec{n}.

Parametrické rovnice roviny

Rovina určená bodem A=[a_1;a_2;a_3] a vektory \vec{u}=(u_1;u_2;u_3) a \vec{v}=(v_1;v_2;v_3)parametrické rovnice tvaru:

\begin{array}{rrl}x&=&a_1+t\cdot u_1+s\cdot v_1\\y&=&a_2+t\cdot u_2+s\cdot v_2\\z&=&a_3+t\cdot u_3+s\cdot v_3\\&&t,s\in\mathbb{R}\end{array}

Zkráceně můžeme vyjádřit \alpha:X=A+t\vec{u}+s\vec{v}, kde t, s nazýváme parametry.

Obecná rovnice roviny

Obecná rovnice roviny je ve tvaru ax+by+cz+d=0, kde konstanty a, b, c jsou souřadnice normálového vektoru a d reálné číslo.

Obecná rovnice roviny rovnoběžné s osami x a y

Pro všechny body ležící v rovině je třetí souřadnice stejná, tedy rovina má obecnou rovnici: z+d=0.

Obecná rovnice roviny rovnoběžné s osami x a z

Pro všechny body ležící v rovině je druhá souřadnice stejná, tedy rovina má obecnou rovnici: y+d=0.

Obecná rovnice roviny rovnoběžné s osami y a z

Pro všechny body ležící v rovině je první souřadnice stejná, tedy rovina má obecnou rovnici: z+d=0.

Bod a rovina

Bod M=[m_1;m_2;m_3] leží v rovině, jestliže jeho souřadnice vyhovují rovnici roviny.

  • Pokud je rovina daná obecnou rovnicí ax+by+cz+d=0, pro souřadnice bodu, který leží na přímce platí: a\cdot m_1+b\cdot m_2+c\cdot m_3+d=0
  • Pokud je rovina daná parametricky, po dosazení souřadnic bodu do parametrických rovnic dostaneme soustavu tří rovnic pro dvě neznámé t, s, která má právě jedno řešení (dvojici reálných čísel).

Obecná rovnice roviny, která prochází počátkem

  • Rovina prochází bodem O=[0;0;0], tedy musí platit: a\cdot0+b\cdot0+c\cdot0+d=0\Rightarrow d=0.
  • Rovina, která prochází počátkem má obecnou rovnici: ax+by+cz=0.

Dvě rovnoběžné roviny

Normálové vektory dvou rovnoběžných rovin \alpha: a_1x+b_1y+c_1z+d_1=0 a \beta: a_2x+b_2y+c_2z+d_2=0 jsou kolineární, tedy souřadnice jednoho vektoru jsou k-násobek souřadnic druhého vektoru. Pro konstanty v obecných rovnicích musí platit:

\begin{array}{rll}a_2&=&k\cdot a_1\\ b_2&=&k\cdot b_1\\c_2&=&k\cdot c_1\\&&k\in\mathbb{R}\end{array}

Pokud by platilo i d_2=k\cdot d_1 roviny jsou totožné.

Zavřít

Roviny: pojmy (těžké)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence