Definice a využití logaritmu

Logaritmus je inverzní operace k umocňování. Logaritmus kladného čísla x při základu a je takové reálné číslo y = \log_a(x), pro které platí a^y = x. Číslo a se nazývá základ logaritmu (báze).

Logaritmus o základu e=2{,}71828182... (Eulerovo číslo) se nazývá přirozený logaritmus a značí se většinou \ln.

Logaritmus o základu 10 se nazývá dekadický logaritmus (a někdy se značí \mathit{lg}).

Logaritmy mají velmi široké využití v mnoha oblastech matematiky. Historicky se využívaly jako užitečná početní pomůcka („logaritmické pravítko“), která využívala faktu, že logaritmus součinu je součet logaritmů. Dnes na logaritmy často narazíme například v informatice při návrhu a analýze algoritmů.

Vlastnosti logaritmů

  • Logaritmus je definován pouze pro kladná čísla.
  • Logaritmus o základu 1 není definován.
  • Logaritmus jedničky je nula, \log_a(1)=0.
  • Logaritmus o stejném základu a argumentu je 1, \log_a{a}=1.
  • Logaritmus součinu je součet logaritmů, \log_a(x\cdot y)=\log_a{x}+\log_a{y}.
  • Logaritmus podílu je rozdíl logaritmů, \log_a\left(\frac{x}{y}\right)=\log_a{x}-\log_a{y}.
  • Logaritmus je inverzní funkcí k exponenciální funkci o stejném základu, \log_a{x}=y \Leftrightarrow a^y=x.
  • Logaritmus mocniny je součin exponentu a logaritmu základu mocniny, \log_a(x^n)=n\log_a{x}.

Graf logaritmu

Graf zobrazuje logaritmus o základu 2:

Komiks pro zpestření

Logaritmus kladného čísla x při základu a je takové reálné číslo y = \log_a(x), pro které platí a^y = x. Příklady:

\log_{10}(100) = 2 protože 10^2 = 100
\log_2(32) = 5 protože 2^5 = 32
\log_5(125) = 3 protože 5^3 = 125
\log_7(1) = 0 protože 7^0 = 1
\log_2(0{,}5) = -1 protože 2^{-1} = \frac{1}{2} = 0{,}5

Některé základní vlastnosti logaritmů vyjádřené pomocí vzorců:

  • \log_a(a)=1
  • \log_a(1)=0
  • \log_a(x\cdot y) = \log_a(x) + \log_a(y) (logaritmus součinu je součet logaritmů)
  • \log_a(\frac{x}{y}) = \log_a(x) - \log_a(y) (logaritmus podílu je rozdíl logaritmů)
  • \log_a(x^k)=k\log_a(x)
  • \log_a(x)=\frac{\log_b(x)}{\log_b(a)}

Logaritmická rovnice je taková, kde neznámá vystupuje jako argument logaritmické funkce, např. 2 \cdot \log_6(x-2) = \log_6(14-x).

U logaritmických rovnic musíme dávat pozor na podmínky řešení. Argument každého logaritmu totiž musí být vždy kladné číslo. V uvedeném příkladě tedy musí platit x-2>0 a současně 14-x > 0.

Logaritmické rovnice řešíme za využití vlastností logaritmické funkce a jejího vztahu k exponenciální funkci. Dílčí způsoby, jak řešit logaritmické rovnice:

  • Převedeme rovnici na tvar \log_a f(x) = c. Pak musí platit f(x) = a^c.
  • Převedeme rovnici na tvar \log_a f(x) = \log_a g(x). Pak musí platit f(x) = g(x).

Grafy exponenciálních a logaritmických funkcí

Přejít ke cvičením na toto téma »

Grafy exponenciálních funkcí

Grafem exponenciální funkce je křivka jménem exponenciála. Na obrázku jsou grafy exponenciálních funkcí se základy 2 a e = 2{,}7 182 818 284\ldots. Vidíme také, že grafy funkcí e^x a e^{-x} jsou spolu souměrné podle osy y.

Efekt přičtení konstanty k exponenciální funkci
Efekt přičtení konstanty k exponentu
Efekt vynásobení exponenciální funkce konstantou
Efekt vynásobení exponentu konstantou

Grafy logaritmických funkcí

Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).

Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.

Značení některých význačných logaritmických funkcí:

funkce popis další možná značení
\log_a x obecně logaritmus x o základu a pro nějaké a >0, a\neq 1
\ln x přirozený logaritmus x, tj. logaritmus x o základu e v angl. textech někdy \log x
\log x dekadický logaritmus x, tj. logaritmus x o základu 10 \log_{10}x
\log_2 x binární logaritmus x, tj. logaritmus x o základu 2 někdy se objevuje \mathrm{lb}\;x
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro rodiče Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence