Přejít na cvičení:
Grafař
Přejít na téma:
Funkce
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
E6F
Sdílet

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

E6F
umime.to/E6F

umime.to/E6F

Vlastnosti funkcí

Pro zjednodušení popisu uvažujeme v tomto shrnutí pouze funkce, jejichž definiční obor tvoří všechna reálná čísla.

Funkce f se nazývá sudá, právě když pro každé x je f(-x) = f(x). Graf sudé funkce je souměrný podle osy y.

Příklady sudých funkcí

  • f_1(x) = x^2
  • f_2(x) = \cos(x)
  • f_3(x) = x^4-3x^2+2

Funkce f se nazývá lichá, právě když pro každé x je f(-x) = -f(x). Graf liché funkce je středově souměrný počátku soustavy souřadnic.

Příklady lichých funkcí

  • f_1(x) = 3x
  • f_2(x) = \sin(x)
  • f_3(x) = x^3-2x

Funkce f se nazývá periodická, právě když existuje číslo p != 0 (perioda funkce) takové, že pro každé x platí f(x+p)=f(x). Typickými příklady periodických funkcí jsou funkce goniometrické. Naopak třeba polynomy periodické nejsou (s výjimkou konstantní funkce).

Funkce f se nazývá zdola omezená, právě když existuje takové číslo k, že pro každé x platí f(x) \geq k. Funkce f se nazývá shora omezená, právě když existuje takové číslo k, že pro každé x platí f(x) \leq k. Funkce f se nazývá omezená, pokud je současně omezená shora i zdola.

Příklady (ne)omezených funkcí

  • Funkce f(x) = \sin(x) je omezená.
  • Funkce f(x) = x^2 je omezená zdola (protože \forall x: f(x) \geq 0), ale není omezená shora.
  • Funkce f(x) = 2x není omezená ani shora, ani zdola.

Funkce f se nazývá prostá, právě když pro každou dvojici x_1 \neq x_2 platí f(x_1) \neq f(x_2).

Funkce f se nazývá rostoucí, právě když pro každou dvojici x_1 < x_2 platí f(x_1) < f(x_2).

Funkce f se nazývá klesající, právě když pro každou dvojici x_1 > x_2 platí f(x_1) > f(x_2).

Zavřít

Vlastnosti funkcí (těžké)



Vyřešeno:



NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence